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 Introduction: Cell cycles, genetic regulatory networks, and
phenotypic development

« Phenotypes, mutations, and genetic variation. The canalization
concept

« Representations of genetic logic: Boolean network models

« Cell type and cycle length in Kauffman network models

« Mapping of the gene strategy tables to Ising hypercubes

« Group theoretic concepts (brief review)

« Symmetry properties of strategies for combinatoric enumeration
« Preserving the phenotype through network interactions

e Summary




Cell cycle in Saccharomyce
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Gene-gene interactions

Gene 1

 Produces protein A

« Activated by protein C

« Suppressed by protein B

Current sta

Gene 2

« Activated by protein A

» Suppressed by protein C
 Produces protein B

4

Gene 3
« Activated by protein B

« Suppressed by protein A
« Produces protein C
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What about multicellula
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Tissue differentiation: Phe

R

Development of the sea
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Canalization: A biologist’s view

C.H. Waddington, Nature 150, 563 (1942).
“Canalization and the inheritance of acquired characters”

“Once the developmental path has been canalized, it is to be
expected that many different agents, including a number of mutations
available in the germplasm of the species, will be able to switch
development into it. By such a series of steps, then, it is possible that
an adaptive response can be fixed without waiting for the occurrence
of a mutation.”

Canalization is mediated by “developmental
reactions [that] are adjusted so as to bring
about one definite end result regardless of
minor variations in conditions during the
course of the reaction.”




Canalization: Allowing evolution to work
.
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Kauffman’s genetic logic m
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S.A. Kauffman, “Metabolic stability \\\
constructed genetic nets,” J. Theor. Biol. 2 N
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Values of k in real ¢

A

Figure |
Hierarchical structure of E. coli transcriptional regulatory network. A: The origin:
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Figure 4. The distribution of number of regulators (directly or indirectly) for
the genes in the E.coli TRN.

.\W. Ma et al, Nucl. Acids Res.
\ b
12, 6643 (2004)

al unorganized network. B: the hier-

archical regulation structure in which all the regulatory links are downward. Nedes in the graph are operons. Links show the
transcriptional regulatory relationships. The global regulators found in this work are shown in red. The yellow marked nodes

are opercns in the longest regulatory pathway related with flagella morilicy.
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Classifying strategies

Number of strategies: 22k

294967296
146741
'44073709551616

\\Q than Avogadro’s number
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Classifying k=2 stre
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TABLE I. The 16 update functions for nodes with 2 inputs. The first column lists the 4 possible states of
the two inputs: the other columns represent one update function each, falling into four classes.

In .'F Cl Cz R

00 I 0 0 1 0 1 I 0 0 0 0 I 1 1 I 0
01 I 0O 0O 1 1 0 O 1 0 0 1 0 1 1 0 1
10 I 0O I 0 0 1 O 0 1 0 1 1 0 1 0 1
11 I 0 I 0 1 0 O 0 0 1 1 1 1 0 I 0

Sensitive to
one state
of one input

p=0.75
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Minority game for an evolving N-K network

«System of N nodes is initialized with fixed K. All nodes are assigned
an unbiased strategy (equal number of Os and 1s).

*Repeatedly update the network until the attractor is reached.

«For each update on the attractor, determine whether “0” or “1” is the
output of the majority of the nodes.

«Assign a “point” +1 to all nodes in the majority on each update.
«The node which is in the majority most often (has the most “points”)
loses the game and is assigned a new randomly chosen unbiased
strategy. This completes an “epoch.”

«Repeat the procedure for the new network.

K.E. Bassler, C. Lee, Y. Lee, PRL 93, 038101 (2004)
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FIG. 3 (color online). Selection for canalization. The average
relative probability of occurrence of the 256 different K = 3
Boolean strategies shown at different stages in the evolution-
ary process. The strategies are grouped according to the
classification in Table I, and the groups are ordered with
decreasing canalization. Results are the average of 10000
different realizations.




Classifying k=3 strategi

K.E. Bassler, C. Lee, Y. Lee, PRL

o [A] B 1 G 1 D | E | Fa | B

[Size 2] 16 [ 24 ] 6 | 48 [ 24 | 8 ] 8

Py | | 0

P [t [12] 13 1/6

P, |1 [3/4] 273 [7/12]1]2 1/2 [5/12] 1/3 [1/4] 0
[ h L [7/S[3/A[1/2] 5/8 [3/4]3/4] 12 | 5/8 ] 1/2 [5/3]1/2]
S [SIN[ N[ A N [N[SJA[N][ N [S[IN[N]A]

Table 2. Classification of the 256 K = 3 Boolean functions according to their canalization properties, internal homogene-
ity, and parity symmetry. (S indicates symmetric, A indicates anti-symmetric, and N indicates neither, or non-symmetric. )
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Counting strategy classe \
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All strategies correspond to all states of the k-hyp:

-

“x\ identify the total number of strategy classes by
nting the number of group orbits that exist for the k




Permutations and Cyclic Decom

3
.
Given an ordered set of elements, a permutation \

that set where each element occurs only once.

‘game” “emag” “ameg” “eagm”
1,2,3,4} {4,3,2,1} {2,3,4,1} {4,2,1,3}

\\\\~ ecomposition: Consider the permutation {4,2,1,3} of
peated applications of this permutation result in a

gm -> maeg -> game

-

can be written in terms of cycles of elements:

b
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Definition 1.1. A group ((,-) is a set G with a binary operation

G xG =G,

and a unit e € &, possessing the following properties.

(1) Unital: for g € GG, we have g-e =e-g=g.
(2) Associative: for g; € GG, we have (g1 -g2) - g3 =91 - (g2 - g3).

(3) Inverses: for g € G, there exists g~ € G so that g- g~ = g1

g = e.
S— S

A set of elements S of & is said to generate GG if every element of G may be
expressed as a product of elements of S, and inverses of elements of S. That is to
say, given g € G, there exists s; € S and ¢; € {+1} so that

g =818y

If a group & is a generated by a single element, it is said to be cyelic. Every element
of a cyclic group G is of the form ¢" for some n € Z.

-



Orbit-counting theorem

Total number of classes P4

1
Po(x1, g, ) = 7 ) |X¥]
Gl &

G mber of symmetry operators (generators) g
o: 1 of elements in X that are left invariant by g

\\«\ of classes for higher k:
ne symmetry operators of the k-hypercube with parity
\\\\ etry operators in terms of cycles

be ed points for each symmetry operator

.

.

he k-hypercube is isomorphic to the hyperoctahedral
\\\\\\t symmetry operations

N




Example: k=2

«|dentify the symmetry operators of the k- hyp

«Write these symmetry operators in terms of cycle \\
«Find the number of fixed points for each symmetry

kl2« = 8 for k=2
(G4 E  2¢ (1)2)@)4) P 0
\E 2 (1243) P 2
2 (3421) P 2
22 (14)(23) P 22
22 (12)(34) P 22
22 (13)(24) P 22
e3P 0
(23)()(@4) P 0




Arbitrarily high k: Cycle

Zyklenzeiger group \




Example: k=2

(23)(1)(4) P

For each operator without parity, the number of functions left invariant is equal to 2", where
N. = Z‘ 1 bi 1s the total number of cycles in the operator. Parity must be treated separately,
no functions are left invariant by the parity operator with any k-hypercube operator containing
at least one cycle of length 1. Thus there are 2"» functions left invariant for the eight operators
which include parity, where N, = (1 — @(b;)) Zle b; and © 1s the Heaviside step function.




(Generating poly

Table 3. Cycle polynomials for k = 1 through 5 and the number of classes Pg for each k.

k  Cycle polynomial Pg
I (1/2) (x] +x2) 2
2 (1/8) (x] +3x3 +2x7x2 + 2x4) 4
3 (1/48) (xF + 13x5 + 8x7x3 + 8xpx6 + 6x7x3 + 12x7) 14
4 (1/384) (x;® + 12x$x3 + 51x5 + 12x7x8 + 32x7x3 + 48x7x2x; + 84x]

+96x3xZ + 48x7) 238

L

(1/3840) (x7% + 384x7,x2 + 20x{°x5 + 60x7 x5% + 231x,° + 80x]x}
+320x7,x7 + 240xTx5x8 + 240x3 x5 + 520x5 +384x7x$

+160x7x3x3x2 + 720x5 x2 + 480x3) 698 635




Ulass structure

-
N N

'ute a term of the form A2+
Table 4. Class structure for k = 2.

Classtype N, (S;) Table 6. Class structure for k = 4.

A ] 2

Class t N Se
A’B 1 8 ki ! i
A2R2 2 3 Alo | 2

AR 1 16

14 p2

Table 5. Class structure for k = 3. A1333 ! o

AR 6 186.667
Class type Ny (Sc) AlZp4 19 191.58
A8 ] ) Al RS 27 323.56
A’B I 16 Alopé 50  320.32
A® B2 3 18.667 A°B7 56 408.57
ASB3 3 37.333 A8 B8 74 173.9
A*B* 6 11.667

2
/ (max 768) S;nax — k' 2k+l

Npe(m,n) = (2 — 8u.n)(25)!/(m!n!), where m+n =2k \



Table 7. Class structure for k = 5.

Classtype N (Sc)

195.4

10 99
47 1530.2
131 30744
472 3839.8
1326  5076.7
3779  5566.7
9013  6224.1
19963 64632
38073  6771.7
65664  6877.2
98804  7031.6
133576 7038.7
158658  7131.3
169112 3554.3




Characteristic polynomials \

Do two randomly chosen strategies belong 1t

Each class has a unique characteristic polynomial.

strategy on the dlagonal
eterminant
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Geometric strategy classification

-
o

We classify a given strategy depending on the numb \
edges, faces, and higher dimensional objects having all entri
the same, p(d,k), d<=k. This represents varying degrees o
canalization.
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Recursion relations

provmg on the maximum bound 2
pld.k+1) > > pild, k)

i=1
A\
2

i%i P, -+1) < 3 p(d ) + min (pa(d, ) pa(d, )

\ 000 1
001 1
010 1
011 1 6 <=p(1,3) <
100 1
010
\Q
\\\




Lower symmetry cases

p(1,3)=6
p(2,3)=0
p(3,3)=0

symmetric
g%f + all possible rotations

p(1,3)=6
p(2,3)=0
p(3,3)=0
asymmetric

+ all possible rotations

p(1,3)
p(2,3)

5
0
p(3,3)=0




Figure 4. Average fraction ¢y of homogeneous d-dimensional sides in randomly selected Boolean
functions versus k for (a)d = 1. (b)d =2.(¢)d =3 and (d)d = 4.
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TRENDS in Cell Biology

Fig. 5. A large network of protein—protein interactions among kinases and phosphatases in yeast. (a) Kinases and phosphatases are very well connected in a large protein—
protein interaction network. (b) Transcription factors, a functional class similar in size to the kinase/phosphatase class, are not. This is an example of an unanticipated result
that is completely unobtainable without genome-wide studies. Loops indicate self-interactions.
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Summary

« Boolean network models can be used to represent genetic
regulatory networks.

« The number of possible strategies grows rapidly with connection
degree k; the number of network states grows rapidly with
network size N.

« Nodes which respond to only a fraction of their inputs have an
effectively reduced k, which reduces the available phase space.

- Mapping of the gene strategy tables to Ising hypercubes allows
us to use symmetry properties to enumerate strategy classes.

« By assembling k+1 strategies out of k strategies recursively, we
can put bounds on the amount of canalization present in the k+1
strategies.

« A significant fraction of strategies are at least partially canalized,
reducing the complexity and cycle length of the logical network.




